The Collectors

Bài 9 trang 28 SGK Hình học 10

Câu hỏi: Chứng minh rằng nếu \(G\) và \(G’\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(A’B’C’\) bất kì thì: \(3\overrightarrow {GG'}  = \overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}. \)
Phương pháp giải
Xen cả hai điểm G, G' vào các véc tơ \(\overrightarrow {AA'} ,\overrightarrow {BB'} ,\overrightarrow {CC'} \) để tính tổng.
Nhóm các véc tơ thích hợp, sử dụng tính chất trọng tâm \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)
Lời giải chi tiết
G là trọng tâm tam giác ABC nên:
\(\begin{array}{l}
\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow - \overrightarrow {GA} - \overrightarrow {GB} - \overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} = \overrightarrow 0
\end{array}\)
G' là trọng tâm tam giác A'B'C' nên:
\(\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0\)
Khi đó:
\(\begin{array}{l}
\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \\
= \overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} \\
+ \overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} \\
+ \overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} \\
= \left({\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right)\\
+ \left({\overrightarrow {GG'} + \overrightarrow {GG'} + \overrightarrow {GG'} } \right)\\
+ \left({\overrightarrow {G'A'} + \overrightarrow {G'B'} + + \overrightarrow {G'C'} } \right)\\
= \overrightarrow 0 + 3\overrightarrow {GG'} + \overrightarrow 0 \\
= 3\overrightarrow {GG'} \\
\Rightarrow \overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = 3\overrightarrow {GG'}
\end{array}\)
Cách khác:
Ta có:
\(\eqalign{
& \overrightarrow {GG'} = \overrightarrow {GA} + \overrightarrow {AA'} + \overrightarrow {A'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GB} + \overrightarrow {BB'} + \overrightarrow {B'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GC} + \overrightarrow {CC'} + \overrightarrow {C'G'} \cr} \)
\(\Rightarrow 3\overrightarrow {GG'} = (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC}) \)\(+ (\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'}) \)\(+ (\overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'})\)       (1)
\(G\) là trọng tâm của tam giác \(ABC\) nên:
\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)   (2)
\(G’\) là trọng tâm của tam giác \(A’B’C’\) nên:
\(\eqalign{
& \overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'} = \overrightarrow 0  (3)\cr} \)
Từ (1), (2) và (3) suy ra:  \(3\overrightarrow {GG'}  = \overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}. \)
 
 

Ôn tập chương I - Vectơ - Toán 10

Quảng cáo

Back
Top