The Collectors

Câu 4.32 trang 182 sách bài tập Giải tích 12 Nâng cao

Câu hỏi:

Câu a​

Hỏi với số nguyên dương n nào, số phức \({\left( {{{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}}} \right)^n}\) là số thực, là số ảo ?
Giải chi tiết:
\({{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}} = {{\sqrt 3  + i} \over 2} = c{\rm{os}}{\pi  \over 6} + isin{\pi  \over 6}\) nên với số n nguyên dương, ta có:
\({\left( {{{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}}} \right)^n} = c{\rm{os}}{{n\pi } \over 6} + isin{{n\pi } \over 6}\)
Số đó là số thực \(\Leftrightarrow \sin {{n\pi } \over 6} = 0 \Leftrightarrow n = 6k\) (k là số nguyên dương)
Số đó là số ảo \(\Leftrightarrow c{\rm{os}}{{n\pi } \over 6} = 0 \Leftrightarrow {{n\pi } \over 6} = {\pi  \over 2} + k\pi  \Leftrightarrow n = 6k + 3\) (k là số nguyên không âm).

Câu b​

Cũng câu hỏi tương tự cho số phức \({\left( {{{7 + i} \over {4 - 3i}}} \right)^n}\)
Giải chi tiết:
\({{7 + i} \over {4 - 3i}} = 1 + i = \sqrt 2 \left( {{\rm{cos}}{\pi  \over 4} + isin{\pi  \over 4}} \right)\) nên với số n nguyên dương, ta có:
\({\left( {{{7 + i} \over {4 - 3i}}} \right)^n} = {\left({\sqrt 2 } \right)^n}\left({{\rm{cos}}{n\pi  \over 4} + isin{n\pi  \over 4}} \right)\)
Số đó là số thực \(\Leftrightarrow \sin {{n\pi } \over 4} = 0 \Leftrightarrow n = 4k\) (k nguyên dương)
Số đó là số ảo \(\Leftrightarrow \cos {{n\pi } \over 4} = 0 \Leftrightarrow n = 4k+2\) (k là số nguyên không âm)
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top