The Collectors

Bài 11 trang 147 SGK Giải tích 12

Câu hỏi: Tính các tích phân sau bằng phương pháp tính tích phân từng phần

Câu a​

a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)
Phương pháp giải:
+) Sử dụng các công thức nguyên hàm cơ bản để tính tích phân.
+) Sử dụng phương pháp đưa vào vi phân.
+) Sử dụng công thức tích phân từng phần: \(\int\limits_a^b {u\left( x \right)dv\left(x \right)} = \left. {u\left(x \right). V\left(x \right)} \right|_a^b - \int\limits_a^b {v\left(x \right)du\left(x \right).} \)
Lời giải chi tiết:
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = \sqrt x dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{2}{3}{x^{\frac{3}{2}}}\end{array} \right..\)
\(\begin{array}{l}
\Rightarrow \int\limits_1^{{e^4}} {\sqrt x \ln xdx} = \left. {\dfrac{2}{3}{x^{\frac{3}{2}}}\ln x} \right|_1^{{e^4}} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{3}{2}}}.\dfrac{1}{x}dx} \\
= \dfrac{8}{3}{e^6} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{1}{2}}}dx} = \dfrac{8}{3}{e^6} - \left. {\dfrac{2}{3}.\dfrac{2}{3}{x^{\frac{3}{2}}}} \right|_1^{{e^4}}\\
= \dfrac{8}{3}{e^6} - \dfrac{4}{9}{e^6} + \dfrac{4}{9}= \dfrac{20}{9}{e^6}+ \dfrac{4}{9}.
\end{array}\)

Câu b​

b) \(\displaystyle \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd(- \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\sin }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \cot x\end{array} \right.\)
Khi đó \(I = \left. { - x\cot x} \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\cot xdx} \)\(= \dfrac{\pi }{6}.\sqrt 3 + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{\sin x}}dx} \)
Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)
Đổi cận \(x = \dfrac{\pi }{6} \Rightarrow t = \dfrac{1}{2},\) \(x = \dfrac{\pi }{2} \Rightarrow t = 1\)
\(\Rightarrow I = \dfrac{\pi }{6}.\sqrt 3 + \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{dt}}{t}} \) \(= \sqrt 3 .\dfrac{\pi }{6} + \left. {\ln \left| t \right|} \right|_{\dfrac{1}{2}}^1 = \sqrt 3 .\dfrac{\pi }{6} - \ln \dfrac{1}{2}\) \(= \dfrac{{\sqrt 3 \pi }}{6} + \ln 2\)

Câu c​

c) \(\int_0^\pi {(\pi - x)\sin {\rm{x}}dx} \)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d(- {\mathop{\rm cosx}\nolimits})} \cr
& = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = \pi - x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = - dx\\v = - \cos x\end{array} \right.\)
\(\Rightarrow I = \left. { - \left( {\pi - x} \right)\cos x} \right|_0^\pi - \int\limits_0^\pi {\cos xdx} \) \(= \pi - \left. {\sin x} \right|_0^\pi = \pi + 0 - 0 = \pi \)

Câu d​

d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d(- {e^{ - x}}}) \cr
& = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} . 2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = - {e^{ - x}}\end{array} \right.\)
\(\Rightarrow I = \left. { - \left( {2x + 3} \right){e^{ - x}}} \right|_{ - 1}^0 + 2\int\limits_{ - 1}^0 {{e^{ - x}}dx} \) \(= - 3 + e - \left. {2{e^{ - x}}} \right|_{ - 1}^0\) \(= - 3 + e - 2 + 2e = 3e - 5\)
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top