The Collectors

Bài 8 trang 147 SGK Giải tích 12

Câu hỏi: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

Câu a​

a) \(f(x) = 2x^3– 3x^2– 12x + 1\) trên đoạn \(\displaystyle \left[ { - 2 ; {5 \over 2}} \right].\)
Phương pháp giải:
Để tìm GTLN, GTNN của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ a;\ b \right]\) ta làm như sau :
+) Tìm các điểm \({{x}_{1}};\ {{x}_{2}};\ {{x}_{3}};...;\ {{x}_{n}}\) thuộc đoạn \(\left[ a;\ b \right]\) mà tại đó hàm số có đạo hàm \(f'\left( x \right)=0\) hoặc không có đạo hàm.
+) Tính \(f\left( {{x}_{1}} \right);\ \ f\left({{x}_{2}} \right);\ \ f\left({{x}_{3}} \right);...;\ \ f\left({{x}_{n}} \right)\) và \(f\left( a \right);\ f\left(b \right).\)
+) So sánh các giá trị tìm được ở trên. Giá trị lớn nhất trong các giá trị đó chính là GTLN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\) và giá trị nhỏ nhất trong các giá trị đó chính là GTNN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\).
\(\begin{align}& \underset{x\in \left[ a;\ b \right]}{\mathop{\max }} f\left( x \right)=\max \left\{ f\left({{x}_{1}} \right);...;\ f\left({{x}_{n}} \right);\ f\left(a \right);\ f\left(b \right) \right\}. \\ & \underset{x\in \left[ a;\ b \right]}{\mathop{\min }} f\left(x \right)=\min \left\{ f\left({{x}_{1}} \right);...;\ f\left({{x}_{n}} \right);\ f\left(a \right);\ f\left(b \right) \right\}. \\ \end{align}\)
Lời giải chi tiết:
\(f(x) = 2x^3– 3x^2– 12x + 1 \) \(⇒ f’(x) = 6x^2 – 6x – 12\)
\(f’(x) = 0 ⇔ x =-1\) hoặc \(x=2\)
So sánh các giá trị:
\(f(-2) = -3\); \(f(-1) = 8\);
\(f(2) = -19\), \(\displaystyle f({5 \over 2}) = {{ - 33} \over 2}\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f(- 1) = 8 \cr 
& \mathop {\min}\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f(2) = - 19 \cr} \)

Câu b​

b) \(f(x) = x^2\ln x\) trên đoạn \(\left[ {1; e} \right].\)
Lời giải chi tiết:
\(f(x) = x^2 \ln x \) \(⇒ f’(x)= 2x\ln x + x > 0, ∀ x ∈ [1, e]\) nên \(f(x)\) đồng biến.
Do đó:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {1, e} \right]} f(x) = f(e) = {e^2} \cr 
& \mathop {\min}\limits_{x \in \left[ {1, e} \right]} f(x) = f(1) = 0 \cr} \)

Câu c​

c) \(f(x) = xe^{-x}\) trên nửa khoảng \([0; +∞).\)
Lời giải chi tiết:
\(f(x)= xe^{-x}\) \(⇒ f’(x)=e^{-x} –xe^{-x} = (1 – x)e^{-x}\) nên:
\(f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0,1)\) và \(f’(x) < 0, ∀x ∈ (1, +∞)\)
nên: \(\displaystyle \mathop {\max }\limits_{x \in {\rm{[}}0, + \infty)} f(x) = f(1) = {1 \over e}.\)
Ngoài ra \(f(x)= xe^{-x} \ge 0, ∀ x ∈ [0, +∞)\) và \(f(0) = 0\) suy ra
\(\mathop {\min}\limits_{x \in {\rm{[}}0, + \infty)} f(x) = f(0) = 0\)

Câu d​

d) \(f(x) = 2\sin x + \sin 2x\) trên đoạn \(\displaystyle\left[ {0; {{3\pi } \over 2}} \right].\)
Lời giải chi tiết:
\(f(x) = 2\sin x + \sin2 x  \) \(⇒ f’(x)= 2\cos x + 2\cos 2x\)
\(f’(x) = 0 ⇔ \cos 2x = -\cos x \) \(⇔ 2x = ± (π – x) + k2π\)
\(\displaystyle ⇔ x \in \left\{ { - \pi  + k2\pi ;{\pi  \over 3} + {{k2\pi } \over 3}} \right\}\)
Trong khoảng \(\displaystyle\left[ {0,{{3\pi } \over 2}} \right]\) , phương trình \(f’(x) = 0\) chỉ có hai nghiệm là \(\displaystyle {x_1} = {\pi  \over 3};{x_2} = \pi \)
So sánh bốn giá trị: \(f(0) = 0\); \(\displaystyle f({\pi  \over 3}) = {{3\sqrt 3 } \over 2}; f(\pi) = 0; f({{3\pi } \over 2}) =  - 2\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({\pi \over 3}) = {{3\sqrt 3 } \over 2} \cr 
& \mathop {\min}\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({{3\pi } \over 2}) = - 2 \cr} \)
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top