The Collectors

Bài 3.51 trang 182 SBT giải tích 12

Câu hỏi: Tìm khẳng định saitrong các khẳng định sau:
A. \(\displaystyle  \int\limits_0^1 {\sin \left( {1 - x} \right)dx}  = \int\limits_0^1 {\sin xdx} \)
B. \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  = 2\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \)
C. \(\displaystyle  \int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx}  = 0\)
D. \(\displaystyle  \int\limits_{ - 1}^1 {{x^{2007}}\left( {1 + x} \right)dx}  = \frac{2}{{2009}}\)
Phương pháp giải
Xét tính đúng sai của các đáp án và kết luận.
Lời giải chi tiết
: Đặt \(\displaystyle  t = 1 - x \Rightarrow dt =  - dx\)
\(\displaystyle   \Rightarrow \int\limits_0^1 {\sin \left( {1 - x} \right)dx}  = \int\limits_1^0 {\sin t\left({ - dt} \right)} \)  \(\displaystyle  \int\limits_0^1 {\sin \left( {1 - x} \right)dx} \) \(\displaystyle   = \int\limits_0^1 {\sin tdt}  = \int\limits_0^1 {\sin xdx} \) nên A đúng.
: Ta có: \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  =  - \left. {2\cos \frac{x}{2}} \right|_0^\pi  = 2\).
\(\displaystyle  2\int\limits_0^{\frac{\pi }{2}} {\sin xdx}  =  - \left. {2\cos x} \right|_0^{\frac{\pi }{2}} = 2\) nên \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  = 2\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \) hay B đúng.
: \(\displaystyle  \int\limits_{ - 1}^1 {{x^{2007}}\left( {1 + x} \right)dx} \) \(\displaystyle   = \int\limits_{ - 1}^1 {\left( {{x^{2007}} + {x^{2008}}} \right)dx} \) \(\displaystyle   = \left. {\left( {\frac{{{x^{2008}}}}{{2008}} + \frac{{{x^{2009}}}}{{2009}}} \right)} \right|_{ - 1}^1\) \(\displaystyle   = \frac{1}{{2008}} + \frac{1}{{2009}} - \frac{1}{{2008}} + \frac{1}{{2009}}\) \(\displaystyle   = \frac{2}{{2009}}\) hay D đúng.
:
Sai vì \({\left( {1 + x} \right)^x} \ge 1,\forall x \in \left[ {0; 1} \right]\) nên nhờ ý nghĩa hình học của tích phân ta có \(\int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx}  > 0\)
Đáp án A.
 

Quảng cáo

Back
Top