The Collectors

Bài 3.14 trang 118 SBT đại số và giải tích 11

Câu hỏi: Cho dãy số \(\left( {{u_n}} \right)\) thoả mãn điều kiện: Với mọi \(n \in N*\) thì \(0 < {u_n} < 1\) và \({u_{n + 1}} < 1 - \dfrac{1}{{4{u_n}}}\)
Chứng minh dãy số đã cho là dãy giảm.
Phương pháp giải
Chứng minh \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left({1 - {u_{n + 1}}} \right)\) và suy ra điều phải chứng minh.
Lời giải chi tiết
Vì \(0 < {u_n} < 1\) với mọi \(n\) nên \(1 - {u_{n + 1}} > 0.\)
Áp dụng bất đẳng thức Cô – si cho hai số dương \({{u_{n + 1}}}\) và \(1-{{u_{n + 1}}}\)ta có:
\(\sqrt {{u_{n + 1}}\left( {1 - {u_{n + 1}}} \right)}  \le \frac{{{u_{n + 1}} + \left({1 - {u_{n + 1}}} \right)}}{2} = \frac{1}{2}\) \(\Rightarrow {u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) \le \dfrac{1}{4}.\) (1)
Mặt khác, từ giả thiết
\({u_{n + 1}} < 1 - \dfrac{1}{{4{u_n}}}\) suy ra  \({u_{n + 1}}.{u_n} < {u_n} - \dfrac{1}{4}\) hay \(\dfrac{1}{4} < {u_n}\left( {1 - {u_{n + 1}}} \right).\) (2)
So sánh (1) và (2) ta có: \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left({1 - {u_{n + 1}}} \right)\) hay \({u_{n + 1}} < {u_n}.\)
Vậy dãy số đã cho giảm.
 

Quảng cáo

Back
Top