The Collectors

Bài 2 trang 121 SGK Đại số và Giải tích 11

Câu hỏi: Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \dfrac{1}{n^{3}}\) với mọi \(n\). Chứng minh rằng \(\lim u_n=1\).
Phương pháp giải
Sử dụng định nghĩa giới hạn 0, xem tại đây.
Lời giải chi tiết
Vì \(\lim \dfrac{1}{{{n^3}}} = 0\) nên theo định nghĩa 1 thì
\(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn một số dương \(A\) bé tùy ý, kể từ một số hạng nào đó trở đi.
(\(\dfrac{1}{{{n^3}}} < A \Leftrightarrow {n^3} > \dfrac{1}{A} \Rightarrow n > \sqrt[3]{{\dfrac{1}{A}}}\), nghĩa là từ số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\) thì \(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn \(A\))
Mà \(\left| {{u_n} - 1} \right| < \dfrac{1}{{{n^3}}}\) nên \(\left| {{u_n} - 1} \right|\) luôn nhỏ hơn một số dương \(A\) bé tùy ý kể từ một số hạng nào đó trở đi
(số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\))
Theo định nghĩa dãy số có giới hạn \(0\) thì \(\lim \left( {{u_n} - 1} \right) = 0\)
\(\Rightarrow \lim {u_n} = 1\). (đpcm)
Cách khác:
Các em có thể sử dụng định lý sau:
Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\). Nếu có \(\left| {{u_n}} \right| \le {v_n}\) và \(\lim {v_n} = 0\) thì \(\lim {u_n} = 0\).
Cụ thể:
Vì \(\left| {{u_n} - 1} \right| < \dfrac{1}{{{n^3}}}\) và \(\lim \dfrac{1}{{{n^3}}} = 0\) nên \(\lim \left( {{u_n} - 1} \right) = 0 \Leftrightarrow \lim {u_n} = 1\).
 

Quảng cáo

Back
Top