The Collectors

Câu 46 trang 123 Sách bài tập Hình học 11 Nâng cao

Câu hỏi: Trong mặt phẳng (P), cho hình thoi ABCD với \(AB = a, AC = {{2{\rm{a}}\sqrt 6 } \over 3}\). Trên đường thẳng vuông góc với mặt phẳng (P) tại giao điểm tại O của hai đường chéo hình thoi, ta lấy điểm S sao cho SB = a. Chứng minh rằng:
a) Tam giác ASC vuông.
b) Mặt phẳng (SAB) và mặt phẳng (SAD) vuông góc với nhau.
Lời giải chi tiết
1615561573258.png

A) Ta có \(A{C^2} + B{{\rm{D}}^2} = 4{{\rm{a}}^2}, AC = {{2{\rm{a}}\sqrt 6 } \over 3}\)
nên \(B{{\rm{D}}^2} = {{4{{\rm{a}}^2}} \over 3} \Rightarrow O{B^2} = {{{a^2}} \over 3}\)
Xét tam giác vuông SOB, ta có
\(S{O^2} = S{B^2} - O{B^2} = {{2{{\rm{a}}^2}} \over 3} \Rightarrow SO = {{a\sqrt 6 } \over 3}\)
Vậy tam giác SAC có trung tuyến SO bằng nửa AC nên SAC là tam giác vuông tại S.
b) Trong mặt phẳng (SOA) kẻ OA1​ vuông góc với SA thì \(SA \bot mp\left( {{A_1}B{\rm{D}}} \right)\), từ đó \(\widehat {B{A_1}D}\) hoặc \({180^0} - \widehat {B{A_1}D}\), là góc giữa hai mặt phẳng (SAB) và (SAD).
Ta có
\(\eqalign{ & O{A_1} = {{OA. OS} \over {SA}} = {{OA. OS} \over {\sqrt {O{A^2} + O{S^2}} }} \cr & = {1 \over 2}.{{a\sqrt 6 } \over 3}.\sqrt 2 = {{a\sqrt 3 } \over 3} \cr} \)
Mặt khác \(B{\rm{D}} = {{2a\sqrt 3 } \over 3}\), từ đó \(\widehat {B{A_1}D} = {90^0}\) hay hai mặt phẳng (SAB) và (SAD) vuông góc.
 

Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc

Quảng cáo

Back
Top