The Collectors

Bài 3 trang 82 SGK Đại số và Giải tích 11

Câu hỏi: Chứng minh rằng với mọi số tự nhiên \(n ≥ 2\), ta có các bất đẳng thức:

Câu a​

\(3^n> 3n + 1\)
Phương pháp giải:
Vận dụng phương pháp chứng minh quy nạp toán học.
Bước 1: Chứng minh mệnh đề đúng với \(n=2\).
Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 2\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).
Khi đó đẳng thức đúng với mọi \(n \in N^*\).
Lời giải chi tiết:
Với n = 2 ta có: \(3^2 = 9 > 7 = 3.2+1\) (đúng)
Giả sử bất đẳng thức đúng với \(n = k ≥ 2\), tức là
\(3^k> 3k + 1\)         (1).
Ta chứng minh bất đẳng thức đúng với \(n=k+1\), tức là cần chứng minh: \(3^{k+1}> 3(k+1) + 1=3k+4\)
Nhân hai vế của (1) với \(3\), ta được:
\(3^{k+1} > 9k + 3 \)
\(\Leftrightarrow 3^{k+1} > 3k + 4 + 6k -1\)
Vì \(k \ge 2 \Rightarrow 6k - 1 \ge 11 > 0\) nên \(3^{k+1} > 3k + 4\).
Tức là bất đẳng thức đúng với \(n = k + 1\).
Vậy theo phương pháp quy nạp toán học thì bất đẳng thức \(3^n> 3n + 1\) đúng với mọi số tự nhiên \(n ≥ 2\).
Cách khác:
+ Với n = 2 thì bđt ⇔ 9 > 7 (luôn đúng).
+ Giả sử bđt đúng với n = k ≥ 2, tức là 3k​ > 3k + 1.
Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1​ > 3(k+1) + 1
Thật vậy, ta có:
3k + 1​ = 3.3k​ > 3.(3k + 1) (Vì 3k​ > 3k + 1 theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.(vì k ≥ 2 nên 6k ≥ 12> 1)
⇒ (1) đúng với n = k + 1.
Vậy 3n​ > 3n + 1 đúng với mọi n ≥ 2.

Câu b​

\(2^{n+1} > 2n + 3\)
Lời giải chi tiết:
Với \(n = 2\) thì \({2^{2 + 1}} = 8 > 7 = 2.2 + 3\) (đúng)
Giả sử bất đẳng thức đúng với \(n = k ≥ 2\), tức là
\(2^{k+1} > 2k + 3\)          (2)
Ta phải chứng minh nó cũng đúng với \(n= k + 1\), nghĩa là phải chứng minh
\({2^{k{\rm{ }} + {\rm{ }}2}} > 2\left( {k{\rm{ }} + {\rm{ }}1} \right) + 3{\rm{ }} \)
\(\Leftrightarrow {2^{k{\rm{ }} + {\rm{ }}2}} > 2k + 5\)
Nhân hai vế của bất đẳng thức (2) với \(2\), ta được:
\({2^{k + 2}} > 4k + 6 \)
\(\Leftrightarrow {2^{k+2}} > 2k + 5 + 2k + 1\)
Vì \(k \ge 2 \Rightarrow 2k + 1> 0\) nên \({2^{k + 2}}> 2k + 5\).
Tức là bất đẳng thức đúng với \(n=k+1\).
Vậy theo phương pháp quy nạp toán học thì bất đẳng thức \({2^{n+1}} > 2n + 3\) đúng với mọi số tự nhiên \(n ≥ 2\).
Cách khác:
+ Với n = 2 thì bđt ⇔ 8 > 7 (luôn đúng).
+ Giả sử bđt đúng khi n = k ≥ 2, nghĩa là 2k+1​ > 2k + 3.
Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2​ > 2(k+ 1)+ 3
Thật vậy, ta có:
2k + 2​ = 2.2k + 1​
> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.
> 2k + 2 + 3 = 2.(k + 1) + 3
(Vì 2k + 4 >3 với mọi k ≥ 2)
⇒ (2) đúng với n = k + 1.
Vậy 2n + 1​ > 2n + 3 với mọi n ≥ 2.
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top