Câu hỏi: Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, xác suất để 4 điểm được chọn có thế tạo thành bốn đỉnh của một tứ diện là
A. .
B. .
C. .
D. .
A.
B.
C.
D.
Cách 1: Không gian mẫu .
Tính biến cố bù như sau:
Xét số cách chọn 4 đỉnh không tạo thành tứ diện. Có 2 trường hợp
+ Trường hợp 1: Chọn 3 điểm thẳng hàng, có 25 cách. Chọn điểm còn lại, có 12 cách.
Vậy có cách.
+ Trường hợp 2: Chọn 4 điểm thuộc 1 mặt mà không có 3 điểm nào thẳng hàng.
- Có 10 mặt chứa 7 điểm: Mỗi mặt 11 cách chọn. Suy ra có 110 cách.
- Có 15 mặt chứa 5 điểm, mỗi mặt 1 cách chọn. Suy ra có 15 cách.
Tổng cách.
Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là .
Cách 2: Mặt phẳng chứa 1 đỉnh của tứ diện và 1 đường trung bình của mặt đối diện, suy ra có 5 điểm
thuộc mỗi mặt (đỉnh, 2 trung điểm, cạnh và 2 trọng tâm) và có 12 mặt loại này. Vậy có (bộ).
Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là .
Tính biến cố bù như sau:
Xét số cách chọn 4 đỉnh không tạo thành tứ diện. Có 2 trường hợp
+ Trường hợp 1: Chọn 3 điểm thẳng hàng, có 25 cách. Chọn điểm còn lại, có 12 cách.
Vậy có
+ Trường hợp 2: Chọn 4 điểm thuộc 1 mặt mà không có 3 điểm nào thẳng hàng.
- Có 10 mặt chứa 7 điểm: Mỗi mặt 11 cách chọn. Suy ra có 110 cách.
- Có 15 mặt chứa 5 điểm, mỗi mặt 1 cách chọn. Suy ra có 15 cách.
Tổng
Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là
Cách 2: Mặt phẳng chứa 1 đỉnh của tứ diện và 1 đường trung bình của mặt đối diện, suy ra có 5 điểm
thuộc mỗi mặt (đỉnh, 2 trung điểm, cạnh và 2 trọng tâm) và có 12 mặt loại này. Vậy có
Vậy xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là
Đáp án A.