Câu hỏi: Tìm họ nguyên hàm của hàm số $f\left( x \right)=x+\cos x$
A. $\int{f\left( x \right)\text{d}x}=1-\sin x+C$.
B. $\int{f\left( x \right)\text{d}x}=x\sin x+\cos x+C$.
C. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{2}}}{2}-\sin x+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{2}}}{2}+\sin x+C$
A. $\int{f\left( x \right)\text{d}x}=1-\sin x+C$.
B. $\int{f\left( x \right)\text{d}x}=x\sin x+\cos x+C$.
C. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{2}}}{2}-\sin x+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{2}}}{2}+\sin x+C$
$\int{f\left( x \right)\text{d}x}=\int{\left( x+\cos x \right)\text{d}x}=\dfrac{{{x}^{2}}}{2}+\sin x+C$
Đáp án D.