Lời giải câu số 12 được đăng tại đây :D
Bài toán:
Cho mạch điện xoay chiều gồm một điện trở thuần có điện trở $R = 30\left(\Omega \right)$, một tụ điện có điện dung $C$(có thể thay đổi được), một cuộn dây không thuần cảm có cảm kháng bằng $10\left(\Omega \right)$, và điện trở $r$ có giá trị bằng $10\left(\Omega \right)$ mắc nối tiếp nhau theo đúng thứ tự đó. Đặt vào hai đầu đoạn mạch điện áp xoay chiều ổn định có giá trị hiệu dụng và tần số không đổi. Người ta cần điều chỉnh $C$ đến giá trị $C_1$ để điện áp hiệu dụng giữa hai đầu đoạn mạch chứa $R$ và $C$ đạt giá trị lớn nhất bằng $120\left(V\right)$ và cần điều chỉnh $C$ đến giá trị $C_2$ để điện áp hiệu dụng giữa hai đầu đoạn mạch chứa $R$ và $C$ đạt giá trị nhỏ nhất gần giá trị nào nhất sau đây?
A. $50\sqrt{3} \left(V\right)$
B. $60\sqrt{2} \left(V\right)$
C. $36\sqrt{5} \left(V\right)$
D. $32\sqrt{7} \left(V\right)$
Lời giải:
Điện áp hiệu dụng giữa hai đầu đoạn mạch chứa R và C: $$U_{RC}=\dfrac{U\sqrt{R^2+Z_C^2}}{\sqrt{\left(R+r\right)^2+\left(Z_L-Z_C\right)^2}}$$
Đặt $f\left(Z_C\right)=\dfrac{Z_C^2+R^2}{\left(Z_C-Z_L\right)^2+\left(R+r\right)^2}$ thì $U_{RC}$ lớn nhất khi và chỉ khi $f\left(Z_C\right)$ lớn nhất, điều này chỉ xảy ra nếu $f'\left(Z_C\right)=0$ hay $$\dfrac{2Z_C\left(Z_C^2-2Z_C. Z_L+Z_L^2+\left(R+r\right)^2\right)-\left(2Z_C-2Z_L\right)\left(R^2+Z_C^2\right)}{\left(\left(R+r\right)^2+\left(Z_L-Z_C\right)^2\right)}=0\left(*\right)$$
Bằng biến đổi đại số, $\left(*\right)$ xảy ra nếu $$Z_L. Z_C^2-\left(Z_L^2+r^2+2Rr\right)Z_C+Z_L. R^2=0\left(**\right)$$
Coi $\left(**\right)$ là phương trình bậc hai ẩn $Z_C$, từ $\left(**\right)$ ta có $Z_C = 90\left(\Omega \right)$ hoặc $Z_C= -10\left(\Omega \right)$
Lập bảng biến thiên, chú ý $Z_C$ không thể là số âm, chúng ta nhận thấy
+$U_{RC}$ lớn nhất khi và chỉ khi $Z_C=90\left(\Omega \right)$
+$U_{RC}$ nhỏ nhất khi và chỉ khi $Z_C \rightarrow 0\left(\Omega \right)$
Khi đó tỉ số giữa $U_1$ và $U_2$ bằng $\dfrac{\sqrt{30^2+90^2}}{\sqrt{\left(10+30\right)^2+\left(90-10\right)^2}}. \dfrac{\sqrt{\left(10+30\right)^2+\left(0-10\right)^2}}{\sqrt{30^2+0^2}}=\dfrac{\sqrt{34}}{4}$
Với giả thiết $U_1= 120\left(V\right)$, suy ra $U_2 \approx 82,32\left(V\right)$
Bằng sợ trợ giúp của máy tính, chúng ta kiểm nghiệm thấy $36\sqrt{5}V$ gần giá trị này nhất.
Chọn đáp án C