Câu hỏi: Có bao nhiêu số nguyên $x$ sao cho ứng với mỗi $x$ tồn tại $y\in \left[ 2;8 \right]$ thoả mãn $\left( y-x \right){{\log }_{2}}\left( x+y \right)=y+{{x}^{2}}$
A. $5$.
B. $8$.
C. $4$.
D. $7$.
A. $5$.
B. $8$.
C. $4$.
D. $7$.
$\left( y-x \right){{\log }_{2}}\left( x+y \right)=y+{{x}^{2}}\left( 1 \right).$
Do $y\in \left[ 2;8 \right]\Rightarrow 2\le y+{{x}^{2}}\le 8\Rightarrow VP\left( 1 \right)>0.$
+ Nếu $\left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y-x\ge 0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y\ge x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left\{ \begin{aligned}
& VT\left( 1 \right)\le 0 \\
& VT\left( 1 \right)\ge 2 \\
\end{aligned} \right. $ không có giá trị nào của $ x$thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y-x<0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y<x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left\{ \begin{aligned}
& 2y\le 1 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.$ không thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& 1<x+y\le 2 \\
& y-x\ge 0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 1<x+y\le 2 \\
& y\ge x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left( y-x \right){{\log }_{2}}\left( x+y \right)\le y-x<y+{{x}^{2}} $ không có giá trị nào của $ x$thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& x+y>2 \\
& y-x>0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right..$
Đặt $f\left( y \right)=\left( y-x \right){{\log }_{2}}\left( x+y \right)-y-{{x}^{2}},y\in \left[ 2;4 \right].$
${f}'\left( y \right)={{\log }_{2}}\left( x+y \right)+\dfrac{\left( y-x \right)}{\left( x+y \right)\ln 2}-1>0$
Do $\left\{ \begin{aligned}
& x+y>2 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow {{\log }_{2}}\left( x+y \right)>1\Rightarrow o{{g}_{2}}\left( x+y \right)-1+\dfrac{\left( y-x \right)}{\left( x+y \right)\ln 2}>0.$
Do hàm số đồng biến. để phuong trình $f\left( y \right)=0$ có nghiệm khi
$\left\{ \begin{aligned}
& f\left( 2 \right)\le 0 \\
& f\left( 8 \right)\ge 0 \\
& x<y \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)-2-{{x}^{2}}\le 0 \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)-8-{{x}^{2}}\ge 0 \\
& x<y \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)\le 2+{{x}^{2}} \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)\ge 2+{{x}^{2}} \\
& -2<x<y,x\in \mathbb{Z} \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right..$
$\left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)\le 2+{{x}^{2}} \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)\ge 2+{{x}^{2}} \\
& x\in \left\{ -1,0,1,2,3,4,5,6,7 \right\} \\
\end{aligned} \right.\Rightarrow x=-1,x=0,x=1,x=2,x=3.$
Vậy có 5 giá trị nguyên thỏa mãn.
Do $y\in \left[ 2;8 \right]\Rightarrow 2\le y+{{x}^{2}}\le 8\Rightarrow VP\left( 1 \right)>0.$
+ Nếu $\left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y-x\ge 0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y\ge x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left\{ \begin{aligned}
& VT\left( 1 \right)\le 0 \\
& VT\left( 1 \right)\ge 2 \\
\end{aligned} \right. $ không có giá trị nào của $ x$thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y-x<0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 0<x+y\le 1 \\
& y<x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left\{ \begin{aligned}
& 2y\le 1 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.$ không thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& 1<x+y\le 2 \\
& y-x\ge 0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& 1<x+y\le 2 \\
& y\ge x \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow \left( y-x \right){{\log }_{2}}\left( x+y \right)\le y-x<y+{{x}^{2}} $ không có giá trị nào của $ x$thỏa mãn.
+ Nếu $\left\{ \begin{aligned}
& x+y>2 \\
& y-x>0 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right..$
Đặt $f\left( y \right)=\left( y-x \right){{\log }_{2}}\left( x+y \right)-y-{{x}^{2}},y\in \left[ 2;4 \right].$
${f}'\left( y \right)={{\log }_{2}}\left( x+y \right)+\dfrac{\left( y-x \right)}{\left( x+y \right)\ln 2}-1>0$
Do $\left\{ \begin{aligned}
& x+y>2 \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Rightarrow {{\log }_{2}}\left( x+y \right)>1\Rightarrow o{{g}_{2}}\left( x+y \right)-1+\dfrac{\left( y-x \right)}{\left( x+y \right)\ln 2}>0.$
Do hàm số đồng biến. để phuong trình $f\left( y \right)=0$ có nghiệm khi
$\left\{ \begin{aligned}
& f\left( 2 \right)\le 0 \\
& f\left( 8 \right)\ge 0 \\
& x<y \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)-2-{{x}^{2}}\le 0 \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)-8-{{x}^{2}}\ge 0 \\
& x<y \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)\le 2+{{x}^{2}} \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)\ge 2+{{x}^{2}} \\
& -2<x<y,x\in \mathbb{Z} \\
& y\in \left[ 2;8 \right] \\
\end{aligned} \right..$
$\left\{ \begin{aligned}
& \left( 2-x \right){{\log }_{2}}\left( x+2 \right)\le 2+{{x}^{2}} \\
& \left( 8-x \right){{\log }_{2}}\left( x+8 \right)\ge 2+{{x}^{2}} \\
& x\in \left\{ -1,0,1,2,3,4,5,6,7 \right\} \\
\end{aligned} \right.\Rightarrow x=-1,x=0,x=1,x=2,x=3.$
Vậy có 5 giá trị nguyên thỏa mãn.
Đáp án A.