Câu hỏi: Cho số phức $z=a+bi\left( a,b\in \mathbb{R} \right)$ thỏa mãn $\left( 1+i \right)z+2\overline{z}=3+2i.$ Tính $P=a+b$
A. $P=\dfrac{1}{2}.$
B. $P=1.$
C. $P=-\dfrac{1}{2}.$
D. $P=-1.$
A. $P=\dfrac{1}{2}.$
B. $P=1.$
C. $P=-\dfrac{1}{2}.$
D. $P=-1.$
Giả sử $z=a+bi\left( a,b\in \mathbb{R} \right)$ thì $\overline{z}=a-bi$ thay vào giả thiết ta được:
$\left( 1+i \right)\left( a+bi \right)+2\left( a-bi \right)=3+2i\Leftrightarrow \left( 3a-b \right)+\left( a-b \right)i=3+2i\Leftrightarrow \left\{ \begin{aligned}
& 3a-b=3 \\
& a-b=2 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& a=\dfrac{1}{2} \\
& b=-\dfrac{3}{2} \\
\end{aligned} \right.$
Vậy $P=a+b=-1.$
$\left( 1+i \right)\left( a+bi \right)+2\left( a-bi \right)=3+2i\Leftrightarrow \left( 3a-b \right)+\left( a-b \right)i=3+2i\Leftrightarrow \left\{ \begin{aligned}
& 3a-b=3 \\
& a-b=2 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& a=\dfrac{1}{2} \\
& b=-\dfrac{3}{2} \\
\end{aligned} \right.$
Vậy $P=a+b=-1.$
Đáp án D.