Câu hỏi: Cho hai hàm số y = f(x), y = g(x) có đồ thị như sau:
Khi đó tổng số nghiệm của hai phương trình và
là
A. 25.
B. 22.
C. 21.
D. 26.
Khi đó tổng số nghiệm của hai phương trình
A. 25.
B. 22.
C. 21.
D. 26.
Quan sát đồ thị ta thấy
Do đó
Phương trình (1) có đúng 1 nghiệm; phương trình (2) có đúng 3 nghiệm; phương trình (3) có đúng 3 nghiệm; phương trình (4) có đúng 3 nghiệm; phương trình (5) có đúng 1 nghiệm. Tất cả các nghiệm trên đều phân biệt nên phương trình f(g(x)) = 0 có đúng 11 nghiệm.
Quan sát đồ thị ta thấy
Do đó
Phương trình (6) có 5 nghiệm; phương trình (7) có 5 nghiệm; phương trình (8) có 1 nghiệm. Tất cả các nghiệm này đều phân biệt nên phương trình (f(g(x)) = 0 có đúng 11 nghiệm.
Vậy tổng số nghiệm của hai phương trình f(g(x)) = 0 và g(f(x)) = 0 là 22 nghiệm.
Do đó
Phương trình (1) có đúng 1 nghiệm; phương trình (2) có đúng 3 nghiệm; phương trình (3) có đúng 3 nghiệm; phương trình (4) có đúng 3 nghiệm; phương trình (5) có đúng 1 nghiệm. Tất cả các nghiệm trên đều phân biệt nên phương trình f(g(x)) = 0 có đúng 11 nghiệm.
Quan sát đồ thị ta thấy
Do đó
Phương trình (6) có 5 nghiệm; phương trình (7) có 5 nghiệm; phương trình (8) có 1 nghiệm. Tất cả các nghiệm này đều phân biệt nên phương trình (f(g(x)) = 0 có đúng 11 nghiệm.
Vậy tổng số nghiệm của hai phương trình f(g(x)) = 0 và g(f(x)) = 0 là 22 nghiệm.
Đáp án B.