The Collectors

Bài 109 trang 123 SBT Hình học 10 Nâng cao

Câu hỏi: Cho parabol \((P): {y^2} = 2px (p > 0)\).

Câu a​

Tìm độ dài của dây cung vuông góc với trục đối xứng của \((P)\) tại tiêu điểm \(F\) của \((P)\).
Giải chi tiết:
(h. 134).
hinh-111-toan-10-hh-nang-cao-c3t.jpg
Gọi \(M, N\) là các giao điểm của \((P)\) và đường thẳng vuông góc với \(Ox\) tại \(F\). Khi đó, toạ độ của \(M, N\) là nghiệm của hệ \(\left\{ \begin{array}{l}x =  \dfrac{p}{2}\\{y^2} = 2px\end{array} \right.\)
Hệ có hai nghiệm là \(\left( { \dfrac{p}{2} ; p} \right) , \left({ \dfrac{p}{2} ;  - p} \right)\).
Vậy \(MN = |{y_M}| + |{y_N}| = 2p\).

Câu b​

\(A\) là một điểm cố định trên \((P)\). Một góc vuông \(uAt\) quay quanh đỉnh \(A\) có các cạnh cắt \((P)\) tại \(B\) và \(C\). Chứng minh rằng đường thẳng \(BC\) luôn đi qua một điểm cố định.
Giải chi tiết:
(h. 135).
hinh-112-toan-10-hh-nang-cao-c3t.jpg
Giả sử \(A = \left( { \dfrac{{{a^2}}}{{2p}} ; a} \right) ,\) \(  B = \left( { \dfrac{{{b^2}}}{{2p}} ; b} \right) , \) \(C = \left( { \dfrac{{{c^2}}}{{2p}} ; c} \right)\).
Phương trình đường thẳng \(BC\) là:
\(\begin{array}{l}2px - (b + c)y + bc = 0.             (1)\\\overrightarrow {AB}  = \left({ \dfrac{{{b^2} - {a^2}}}{{2p}} ; b - a} \right) ,\\\overrightarrow {AC}  = \left({ \dfrac{{{c^2} - {a^2}}}{{2p}} ; c - a} \right).\\\overrightarrow {AB}  \bot \overrightarrow {AC}    \Leftrightarrow   \overrightarrow {AC} .\overrightarrow {AC}  = 0 \\   \Leftrightarrow   ({b^2} - {a^2})({c^2} - {a^2})\\ + 4{p^2}(b - a)(c - a) = 0\\ \Leftrightarrow   (b + a)(c + a) + 4{p^2} = 0\\ \Leftrightarrow   bc + a(b + c) + {a^2} + 4{p^2} = 0.       (2)\end{array}\)
Rút \(bc\) từ (2) thay vào (1), ta được phương trình của \(BC\) là
\(2px - {a^2} - 4{p^2} - (b + c)(y + a) = 0\)                 (3)
Dễ thấy đường thẳng \(BC\) có dạng (3) luôn đi qua điểm cố định \(M = \left( { \dfrac{{{a^2}}}{{2p}} + 2p ;  - a} \right)\).
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top