Câu hỏi: Với $a, b$ là hai số thực dương tùy ý, biểu thức ${{\log }_{2022}}\left( 2022{{a}^{2}}b \right)$ bằng
A. $1+\dfrac{1}{2}{{\log }_{2022}}a+{{\log }_{2022}}b$.
B. $1+2{{\log }_{2022}}a+{{\log }_{2022}}b$.
C. $2022+\dfrac{1}{2}{{\log }_{2022}}a+{{\log }_{2022}}b$.
D. $2022+2{{\log }_{2022}}a+{{\log }_{2022}}b$.
A. $1+\dfrac{1}{2}{{\log }_{2022}}a+{{\log }_{2022}}b$.
B. $1+2{{\log }_{2022}}a+{{\log }_{2022}}b$.
C. $2022+\dfrac{1}{2}{{\log }_{2022}}a+{{\log }_{2022}}b$.
D. $2022+2{{\log }_{2022}}a+{{\log }_{2022}}b$.
Ta có ${{\log }_{2022}}\left( 2022{{a}^{2}}b \right)={{\log }_{2022}}2022+{{\log }_{2022}}{{a}^{2}}+{{\log }_{2022}}b=1+2{{\log }_{2022}}a+{{\log }_{2022}}b$.
Đáp án B.