Câu hỏi: Trong không gian với hệ tọa độ Oxyz, hãy tính góc giữa hai vectơ $\overrightarrow{a}\left( 1;2;-2 \right)$ và $\overrightarrow{b}\left( -1;-1;0 \right)$.
A. $\left( \overrightarrow{a},\overrightarrow{b} \right)=120{}^\circ $.
B. $\left( \overrightarrow{a},\overrightarrow{b} \right)=45{}^\circ $.
C. $\left( \overrightarrow{a},\overrightarrow{b} \right)=60{}^\circ $.
D. $\left( \overrightarrow{a},\overrightarrow{b} \right)=135{}^\circ $.
A. $\left( \overrightarrow{a},\overrightarrow{b} \right)=120{}^\circ $.
B. $\left( \overrightarrow{a},\overrightarrow{b} \right)=45{}^\circ $.
C. $\left( \overrightarrow{a},\overrightarrow{b} \right)=60{}^\circ $.
D. $\left( \overrightarrow{a},\overrightarrow{b} \right)=135{}^\circ $.
Ta có: $\cos \left( \overrightarrow{a},\overrightarrow{b} \right)=\dfrac{1.\left( -1 \right)+2.\left( -1 \right)+\left( -2 \right).0}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{\left( -2 \right)}^{2}}}.\sqrt{{{\left( -1 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{0}^{2}}}}=-\dfrac{1}{\sqrt{2}}\Rightarrow \left( \overrightarrow{a},\overrightarrow{b} \right)=135{}^\circ $
Đáp án D.