T

Trong không gian Oxyz, cho ba điểm A(1;0;0),B(0;2;0),C(0;0;3)...

Câu hỏi: Trong không gian Oxyz, cho ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Gọi M là điểm thay đổi trên mặt phẳng (ABC)N là điểm trên tia OM sao cho OM.ON=12. Biết N luôn thuộc một mặt cầu cố định. Xác định tọa độ tâm mặt cầu đó.
A. (1;2;3)
B. (12;6;4)
C. (6;3;2)
D. (6;3;2)
HD: Phương trình mặt phẳng (ABC)x1+y2+z3=16x3y2z+6=0
Gọi N(a;b;c)ON=a2+b2+c2OM=12a2+b2+c2
Do đó OM=12a2+b2+c2.ONM(12aa2+b2+c2;12ba2+b2+c2;12ca2+b2+c2)
Điểm M(ABC)72a36b24ca2+b2+c2+6=0a2+b2+c2+12a6b4c=0
Vậy M thuộc mặt cầu (S):(x+6)2+(y3)2+(z2)2=7 có tâm I(6;3;2).
Đáp án B.
 

Quảng cáo

Back
Top