T

Tìm nguyên hàm $F\left( x \right)=\int{{{\sin }^{2}}2xdx}$

Câu hỏi: Tìm nguyên hàm $F\left( x \right)=\int{{{\sin }^{2}}2xdx}$
A. $F\left( x \right)=\dfrac{1}{2}x-\dfrac{1}{8}\cos 4x+C$
B. $F\left( x \right)=\dfrac{1}{2}x-\dfrac{1}{8}\sin 4x+C$
C. $F\left( x \right)=\dfrac{1}{2}x-\dfrac{1}{8}\sin 4x$
D. $F\left( x \right)=\dfrac{1}{2}x+\dfrac{1}{8}\sin 4x+C$
Ta có: $F\left( x \right)=\int{{{\sin }^{2}}2xdx}=\int{\dfrac{1-\cos 4x}{2}}dx=\dfrac{1}{2}\int{1dx-\dfrac{1}{2}\int{\cos 4xdx}}$
$=\dfrac{1}{2}x-\dfrac{1}{8}\int{\cos 4xd\left( 4x \right)}=\dfrac{1}{2}x-\dfrac{1}{8}\sin 4x+C$
Đáp án B.
 

Quảng cáo

Back
Top