Câu hỏi: Tìm nguyên hàm của hàm số $f\left( x \right)={{\left( 3-5x \right)}^{4}}.$
A. $\int{f\left( x \right)\text{d}x=-\dfrac{{{\left( 3-5x \right)}^{5}}}{5}}+C.$
B. $\int{f\left( x \right)\text{d}x=-\dfrac{{{\left( 3-5x \right)}^{5}}}{25}}+C.$
C. $\int{f\left( x \right)\text{d}x=\dfrac{{{\left( 3-5x \right)}^{5}}}{25}}+C.$
D. $\int{f\left( x \right)\text{d}x=-20{{\left( 3-5x \right)}^{3}}}+C.$
A. $\int{f\left( x \right)\text{d}x=-\dfrac{{{\left( 3-5x \right)}^{5}}}{5}}+C.$
B. $\int{f\left( x \right)\text{d}x=-\dfrac{{{\left( 3-5x \right)}^{5}}}{25}}+C.$
C. $\int{f\left( x \right)\text{d}x=\dfrac{{{\left( 3-5x \right)}^{5}}}{25}}+C.$
D. $\int{f\left( x \right)\text{d}x=-20{{\left( 3-5x \right)}^{3}}}+C.$
Ta có $\int{f\left( x \right)d\text{x}}=\int{{{\left( 3-5\text{x} \right)}^{4}}d\text{x}}=\dfrac{1}{5}\int{{{\left( 5\text{x}-3 \right)}^{4}}d\left( 5\text{x}-3 \right)}=\dfrac{\left( 5\text{x}-{{3}^{5}} \right)}{25}+C$.
Đáp án B.