Câu hỏi: Tìm họ nguyên hàm $\int{{{\cos }^{2021}}x\sin xdx}$ ta được kết quả là
A. $\int{{{\cos }^{2021}}x\sin xdx=-\dfrac{1}{2021}{{\cos }^{2021}}x+C.}$
B. $\int{{{\cos }^{2021}}x\sin xdx=\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
C. $\int{{{\cos }^{2021}}x\sin xdx=-\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
D. $\int{{{\cos }^{2021}}x\sin xdx=\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
A. $\int{{{\cos }^{2021}}x\sin xdx=-\dfrac{1}{2021}{{\cos }^{2021}}x+C.}$
B. $\int{{{\cos }^{2021}}x\sin xdx=\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
C. $\int{{{\cos }^{2021}}x\sin xdx=-\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
D. $\int{{{\cos }^{2021}}x\sin xdx=\dfrac{1}{2022}{{\cos }^{2022}}x+C.}$
Ta có $\int{{{\cos }^{2021}}x\sin xdx=-}\int{{{\cos }^{2021}}xd\left( \cos x \right)=-\dfrac{1}{2022}{{\cos }^{2022}}x+C}$
Đáp án C.