Câu hỏi: Tìm họ nguyên hàm của hàm số $f\left( x \right)=3{{x}^{2}}+{{e}^{x}}.$
A. $\int{f(x)\text{d}x}=\dfrac{{{x}^{3}}}{3}+{{e}^{x}}+C.$
B. $\int{f(x)\text{d}x}={{x}^{3}}+\dfrac{{{e}^{x+1}}}{x+1}+C.$
C. $\int{f(x)\text{d}x}={{x}^{3}}+{{e}^{x}}+C.$
D. $\int{f(x)\text{d}x}=6x+{{e}^{x}}+C.$
A. $\int{f(x)\text{d}x}=\dfrac{{{x}^{3}}}{3}+{{e}^{x}}+C.$
B. $\int{f(x)\text{d}x}={{x}^{3}}+\dfrac{{{e}^{x+1}}}{x+1}+C.$
C. $\int{f(x)\text{d}x}={{x}^{3}}+{{e}^{x}}+C.$
D. $\int{f(x)\text{d}x}=6x+{{e}^{x}}+C.$
$\int{f(x)\text{d}x}=\int{(3{{x}^{2}}+{{e}^{x}})\text{d}x}={{x}^{3}}+{{e}^{x}}+C.$
Đáp án C.