Câu hỏi: Tìm giá trị lớn nhất của hàm số $y=x-{{e}^{2x}}$ trên đoạn $\left[ -1;1 \right]$.
A. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{-\left( \ln 2+1 \right)}{2}$.
B. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=1-{{e}^{2}}$.
C. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=-\left( 1+{{e}^{-2}} \right)$.
D. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{\ln 2+1}{2}$.
A. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{-\left( \ln 2+1 \right)}{2}$.
B. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=1-{{e}^{2}}$.
C. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=-\left( 1+{{e}^{-2}} \right)$.
D. $\underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{\ln 2+1}{2}$.
Ta có ${y}'=1-2{{e}^{2x}};{y}'=0\Leftrightarrow x=-\dfrac{\ln 2}{2}$.
Ta có $y\left( -1 \right)=-1-\dfrac{1}{{{e}^{2}}};y\left( 1 \right)=1-{{e}^{2}};y\left( -\dfrac{\ln 2}{2} \right)=-\dfrac{\ln 2}{2}-\dfrac{1}{2}\Rightarrow \underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{-\left( \ln 2+1 \right)}{2}$.
Ta có $y\left( -1 \right)=-1-\dfrac{1}{{{e}^{2}}};y\left( 1 \right)=1-{{e}^{2}};y\left( -\dfrac{\ln 2}{2} \right)=-\dfrac{\ln 2}{2}-\dfrac{1}{2}\Rightarrow \underset{\left[ -1;1 \right]}{\mathop{\max }} y=\dfrac{-\left( \ln 2+1 \right)}{2}$.
Đáp án A.