Câu hỏi: Tập nghiệm của bất phương trình ${{\left( \dfrac{1}{2} \right)}^{{{x}^{2}}-2}}>{{2}^{4-3x}}$ là
A. $\left( -\infty ;1 \right)$.
B. $\left( 1;2 \right)$.
C. $\left( -\infty ;1 \right)\cup \left( 2;+\infty \right)$.
D. $\left( 2;+\infty \right)$.
A. $\left( -\infty ;1 \right)$.
B. $\left( 1;2 \right)$.
C. $\left( -\infty ;1 \right)\cup \left( 2;+\infty \right)$.
D. $\left( 2;+\infty \right)$.
Bất phương trình ${{\left( \dfrac{1}{2} \right)}^{{{x}^{2}}-2}}>{{2}^{4-3x}}$ $\Leftrightarrow {{2}^{-{{x}^{2}}+2}}>{{2}^{4-3x}}$ $\Leftrightarrow -{{x}^{2}}+2>4-3x$ $\Leftrightarrow -{{x}^{2}}+3x-2>0$ $\Leftrightarrow x\in \left( 1;2 \right)$.
Vậy tập nghiệm của bất phương trình ${{\left( \dfrac{1}{2} \right)}^{{{x}^{2}}-2}}>{{2}^{4-3x}}$ là $\left( 1;2 \right)$.
Vậy tập nghiệm của bất phương trình ${{\left( \dfrac{1}{2} \right)}^{{{x}^{2}}-2}}>{{2}^{4-3x}}$ là $\left( 1;2 \right)$.
Đáp án B.