T

Phương trình ${{x}^{5}}-3x+23=0$ có nghiệm thuộc khoảng:

Câu hỏi: Phương trình ${{x}^{5}}-3x+23=0$ có nghiệm thuộc khoảng:
A. $\left( 2;3 \right)$.
B. $\left( -2;-1 \right)$.
C. $\left( -3;-2 \right)$.
D. $\left( 0;1 \right)$.

Xét hàm số $f(x)={{x}^{5}}-3x+23$ trên $\mathbb{R}$.
Ta có $\left\{ \begin{aligned}
& f(-2)=-3 \\
& f(-1)=25 \\
\end{aligned} \right.\Rightarrow f(-2).f(-1)<0$.
Suy ra phương trình ${{x}^{5}}-3x+23=0$ có ít nhất 1 nghiệm thuộc khoảng $\left( -2;-1 \right)$.
Đáp án B.
 

Câu hỏi này có trong đề thi

Quảng cáo

Back
Top