T

Phương trình ${{\log }_{2017}}x+{{\log }_{2016}}x=0$ có tất cả bao...

Câu hỏi: Phương trình ${{\log }_{2017}}x+{{\log }_{2016}}x=0$ có tất cả bao nhiêu nghiệm?
A. 0.
B. 1.
C. 2.
D. 3.
Điều kiện: $x>0$
Phương trình tương đương với: ${{\log }_{2017}}x+{{\log }_{2016}}2017.{{\log }_{2017}}x=0$
$\begin{aligned}
& \Leftrightarrow {{\log }_{2017}}x.\left( 1+{{\log }_{2016}}2017 \right)=0 \\
& \Leftrightarrow {{\log }_{2017}}x=0\Leftrightarrow x=1 \\
\end{aligned}$

Chú ý: Ta có ${{\log }_{a}}c={{\log }_{a}}b.{{\log }_{b}}c$ (với $0<a,b\ne 1;c>0)$
Việc chèn cơ số để làm xuất hiện cơ số chung sẽ khiến bài toán trở nên dễ dàng hơn.
Đáp án B.
 

Câu hỏi này có trong đề thi

Quảng cáo

Back
Top