Câu hỏi: Nguyên hàm của hàm số $y={{x}^{2}}-3x+\dfrac{1}{x}$ là
A. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}-\ln \left| x \right|+C$.
B. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\dfrac{1}{{{x}^{2}}}+C$.
C. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\ln x+C$.
D. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\ln \left| x \right|+C$.
A. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}-\ln \left| x \right|+C$.
B. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\dfrac{1}{{{x}^{2}}}+C$.
C. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\ln x+C$.
D. $\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\ln \left| x \right|+C$.
Áp dụng công thức nguyên hàm ta có $\int{\left( {{x}^{2}}-3x+\dfrac{1}{x} \right)\text{d}x}=\dfrac{{{x}^{3}}}{3}-\dfrac{3{{x}^{2}}}{2}+\ln \left| x \right|+C$.
Đáp án D.