Câu hỏi: Nếu $\int\limits_{1}^{6}{f\left( x \right)\text{d}x=2}$ và ${\int\limits_{1}^{6}{g\left( x \right)\text{d}x=-4}}$ thì ${\int\limits_{1}^{6}{\left( f\left( x \right)+g\left( x \right) \right)\text{d}x}}$ bằng
A. $-2$.
B. $6$.
C. $2$.
D. $-6$.
A. $-2$.
B. $6$.
C. $2$.
D. $-6$.
Ta có $\int\limits_{1}^{6}{\left( f\left( x \right)+g\left( x \right) \right)}\text{d}x=\int\limits_{1}^{6}{f\left( x \right)\text{d}x}+\int\limits_{1}^{6}{g\left( x \right)\text{d}x}=2+\left( -4 \right)=-2$.
Đáp án A.