T

Nếu $\int\limits_{0}^{2}{\left[ f\left( x \right)-x \right]}dx=1$...

Câu hỏi: Nếu $\int\limits_{0}^{2}{\left[ f\left( x \right)-x \right]}dx=1$ thì $\int\limits_{0}^{2}{f\left( x \right)dx}$ bằng
A. $1$.
B. $3$.
C. $2$.
D. $4$.
Ta có $1=\int\limits_{0}^{2}{\left[ f\left( x \right)-x \right]}dx=\int\limits_{0}^{2}{f\left( x \right)dx-\int\limits_{0}^{2}{xdx}}=\int\limits_{0}^{2}{f\left( x \right)dx}-2$ $\Leftrightarrow \int\limits_{0}^{2}{f\left( x \right)dx=3}$
Đáp án B.
 

Quảng cáo

Back
Top