Câu hỏi: Họ nguyên hàm của hàm số $f\left( x \right)={{e}^{2\text{x}+1}}$ là
A. $\int{f\left( x \right)\text{d}x}=2{{e}^{2x+1}}+C$.
B. $\int{f\left( x \right)\text{d}x}={{e}^{{{x}^{2}}+x}}+C$.
C. $\int{f\left( x \right)\text{d}x}=\dfrac{1}{2}{{e}^{2x+1}}+C$.
D. $\int{f\left( x \right)\text{d}x}=2{{e}^{2x+1}}+C$.
A. $\int{f\left( x \right)\text{d}x}=2{{e}^{2x+1}}+C$.
B. $\int{f\left( x \right)\text{d}x}={{e}^{{{x}^{2}}+x}}+C$.
C. $\int{f\left( x \right)\text{d}x}=\dfrac{1}{2}{{e}^{2x+1}}+C$.
D. $\int{f\left( x \right)\text{d}x}=2{{e}^{2x+1}}+C$.
$\int{f\left( x \right)\text{d}x}=\int{{{e}^{2\text{x}+1}}\text{d}x=}\dfrac{1}{2}{{e}^{2x+1}}+C$.
Đáp án C.