Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.
T

Giải bài 3.26 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống

Câu hỏi: Một tàu vũ trụ nằm trong một quỹđạo tròn và ở độ cao 148 km so với bề mặt Trái Đât (H.3.27). Sau khi đạt được vận tốc cần thiết để thoát khỏi lực hấp dẫn của Trái Đất, tàu vũ trụ sẽ đi theo quỹ đạo parabol với tâm Trái Đất là tiêu điểm; điểm khởi đầu của quỹ đạo này là đỉnh parabol quỹ đạo.
a) Viết phương trình chính tắc của parabol quỹ đạo (1 đơn vị đo trên mặt phẳng toạ độ ứng với 1 km trên thực tế, lấy bán kính Trái Đất là 6 371 km).
b) Giải thích vì sao, kể từ khi đi vào quỹ đạo parabol, càng ngày, tàu vũ trụ càng cách xa Trái Đất.
Phương pháp giải
a) Bước 1: Gọi (E) và (E') là 2 elip có cùng tâm sai.
Bước 2: Lấy M bất kì thuộc (E), chỉ ra tồn tại M' thuộc (E') thỏa mãn:

b) Với bất kì thuộc (E), ta có:
nhỏ nhất bằng
lớn nhất bằng
Lời giải chi tiết
a) Gọi phương trình chính tắc của quỹ đạo parabol là
Ta có: OF = 148 + 6371 = 6519 (km)
Tâm Trái Đất là tiêu điểm nên
PTCT của quỹ đạo parabol là
b) Gọi vị trí của tàu vụ trụ là M(x; y).
Khoảng cách từ tàu đến tâm Trái Đất là
Kể từ khi đi vào quỹ đạo parabol, hoành độ x của tàu vũ trụ sẽ ngày càng tăng, do đó tàu ngày càng xa Trái Đất.