Câu hỏi: Có bao nhiêu số nguyên $x$ thoả mãn $\sqrt{2{{\log }_{3}}\left( x+2 \right)}-\sqrt{{{\log }_{3}}\left( 2{{x}^{2}}-1 \right)}\ge \left( x+1 \right)\left( x-5 \right)$ ?
A. $8$.
B. $7$.
C. $6$.
D. $5$.
& x+2\ge 1 \\
& 2{{x}^{2}}-1\ge 1 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x\ge -1 \\
& x\le -1\vee x\ge 1 \\
\end{aligned} \right.\Leftrightarrow x\ge 1\Rightarrow D=\left[ 1;+\infty \right)$
Ta có $\sqrt{2{{\log }_{3}}\left( x+2 \right)}-\sqrt{{{\log }_{3}}\left( 2{{x}^{2}}-1 \right)}\ge \left( x+1 \right)\left( x-5 \right)$
$\Leftrightarrow \sqrt{{{\log }_{3}}\left( {{x}^{2}}+4x+4 \right)}+\left( {{x}^{2}}+4x+4 \right)\ge \sqrt{{{\log }_{3}}\left( 2{{x}^{2}}-1 \right)}+\left( 2{{x}^{2}}-1 \right)$
Đặt $f\left( t \right)=\sqrt{{{\log }_{3}}t}+t, \forall t\ge 1\Rightarrow {f}'\left( t \right)=\dfrac{1}{t.\ln 3}.\dfrac{1}{2\sqrt{{{\log }_{3}}t}}+1>0, \forall t>1$
Suy ra $f\left( t \right)$ đồng biến trên $\left( 1;+\infty \right)$
Suy ra $f\left( {{x}^{2}}+4x+4 \right)\ge f\left( 2{{x}^{2}}-1 \right)\Leftrightarrow {{x}^{2}}+4x+4\ge 2{{x}^{2}}-1\Leftrightarrow -1\le x\le 5$
Vậy có $7$ số nguyên $x$ thoả mãn.
A. $8$.
B. $7$.
C. $6$.
D. $5$.
ĐKXĐ: $\left\{ \begin{aligned}& x+2\ge 1 \\
& 2{{x}^{2}}-1\ge 1 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x\ge -1 \\
& x\le -1\vee x\ge 1 \\
\end{aligned} \right.\Leftrightarrow x\ge 1\Rightarrow D=\left[ 1;+\infty \right)$
Ta có $\sqrt{2{{\log }_{3}}\left( x+2 \right)}-\sqrt{{{\log }_{3}}\left( 2{{x}^{2}}-1 \right)}\ge \left( x+1 \right)\left( x-5 \right)$
$\Leftrightarrow \sqrt{{{\log }_{3}}\left( {{x}^{2}}+4x+4 \right)}+\left( {{x}^{2}}+4x+4 \right)\ge \sqrt{{{\log }_{3}}\left( 2{{x}^{2}}-1 \right)}+\left( 2{{x}^{2}}-1 \right)$
Đặt $f\left( t \right)=\sqrt{{{\log }_{3}}t}+t, \forall t\ge 1\Rightarrow {f}'\left( t \right)=\dfrac{1}{t.\ln 3}.\dfrac{1}{2\sqrt{{{\log }_{3}}t}}+1>0, \forall t>1$
Suy ra $f\left( t \right)$ đồng biến trên $\left( 1;+\infty \right)$
Suy ra $f\left( {{x}^{2}}+4x+4 \right)\ge f\left( 2{{x}^{2}}-1 \right)\Leftrightarrow {{x}^{2}}+4x+4\ge 2{{x}^{2}}-1\Leftrightarrow -1\le x\le 5$
Vậy có $7$ số nguyên $x$ thoả mãn.
Đáp án B.