Câu hỏi: Cho nguyên hàm $\int{\dfrac{x-1}{{{x}^{2}}-3\text{x}-4}d\text{x}}=a\ln \left( x-4 \right)+b\ln \left( x+1 \right)+C$ trên khoảng $\left( 4;+\infty \right)$. Tính giá trị của biểu thức $T=3\text{a}+2b$.
A. $T=\dfrac{13}{5}$
B. $T=\dfrac{12}{5}$
C. $T=0$
D. $T=1$
A. $T=\dfrac{13}{5}$
B. $T=\dfrac{12}{5}$
C. $T=0$
D. $T=1$
Đồng nhất thức $\dfrac{x-1}{{{x}^{2}}-3\text{x}-4}=\dfrac{x-1}{\left( x-4 \right)\left( x+1 \right)}=\dfrac{A}{x-4}+\dfrac{B}{x+1}$.
Suy ra $x-1=A\left( x+1 \right)+B\left( x-4 \right)\Leftrightarrow \left\{ \begin{aligned}
& A+B=1 \\
& A-4B=-1 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& A=\dfrac{3}{5} \\
& B=\dfrac{2}{5} \\
\end{aligned} \right.$
Do đó $\int{\dfrac{x-1}{{{x}^{2}}-3\text{x}-4}d\text{x}}=\int{\left( \dfrac{3}{5}.\dfrac{1}{x-4}+\dfrac{2}{5}.\dfrac{1}{x+1} \right)d\text{x}}=\dfrac{3}{5}\ln \left( x-4 \right)+\dfrac{2}{5}\ln \left( x+1 \right)+C$
Suy ra $a=\dfrac{3}{5},b=\dfrac{2}{5}\Rightarrow T=\dfrac{13}{5}$.
Suy ra $x-1=A\left( x+1 \right)+B\left( x-4 \right)\Leftrightarrow \left\{ \begin{aligned}
& A+B=1 \\
& A-4B=-1 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& A=\dfrac{3}{5} \\
& B=\dfrac{2}{5} \\
\end{aligned} \right.$
Do đó $\int{\dfrac{x-1}{{{x}^{2}}-3\text{x}-4}d\text{x}}=\int{\left( \dfrac{3}{5}.\dfrac{1}{x-4}+\dfrac{2}{5}.\dfrac{1}{x+1} \right)d\text{x}}=\dfrac{3}{5}\ln \left( x-4 \right)+\dfrac{2}{5}\ln \left( x+1 \right)+C$
Suy ra $a=\dfrac{3}{5},b=\dfrac{2}{5}\Rightarrow T=\dfrac{13}{5}$.
Đáp án A.