Câu hỏi: Cho $\int\limits_{0}^{2}{f\left( x \right) }\text{d}x=3$ và $\int\limits_{0}^{2}{g\left( x \right) }\text{d}x=-1$. Giá trị $\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right] }\text{d}x$ bằng:
A. $12$.
B. $0$.
C. $8$.
D. $10$.
A. $12$.
B. $0$.
C. $8$.
D. $10$.
$\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right]}\text{ d}x$ $=\int\limits_{0}^{2}{f\left( x \right)}\text{ d}x-5\int\limits_{0}^{2}{g\left( x \right)}\text{ d}x+\int\limits_{0}^{2}{x}\text{ d}x$ $=3-5.\left( -1 \right)+\dfrac{1}{2}\left( {{2}^{2}}-0 \right)=10$.
Đáp án D.