T

Cho hàm số $f(x)=\left\{ \begin{aligned} & {{x}^{2}}+1 khi...

Câu hỏi: Cho hàm số $f(x)=\left\{ \begin{aligned}
& {{x}^{2}}+1 khi x\ge 0 \\
& 2{{x}^{2}}+1 khi x<0 \\
\end{aligned} \right. $. Tích phân $ \int\limits_{\dfrac{1}{e}}^{e}{\dfrac{f'(\ln x)\ln x}{x}dx}$ bằng
A. $\dfrac{14}{3}$.
B. $-\dfrac{4}{3}$.
C. $-4$.
D. 2.
Đặt $t=\ln x\Rightarrow dt=\dfrac{1}{x}dx; x=\dfrac{1}{e}\Rightarrow t=-1;x=e\Rightarrow t=1$
$\int\limits_{\dfrac{1}{e}}^{e}{\dfrac{f'(\ln x)\ln x}{x}dx}=\int\limits_{-1}^{1}{f'(t).tdt}=\int\limits_{-1}^{1}{td(f(t}))=\left. tf(t) \right|_{-1}^{1}-\int\limits_{-1}^{1}{f(t)dt}$
$=f(1)+f(-1)-I=2+3-I=5-I$.
Ta có $I=\int\limits_{-1}^{1}{f(t)dt}=\int\limits_{-1}^{0}{f(t)dt}+\int\limits_{0}^{1}{f(t)dt=}\int\limits_{-1}^{0}{(2{{t}^{2}}+1)dt}+\int\limits_{0}^{1}{({{t}^{2}}+1)dt=}\dfrac{5}{3}+\dfrac{4}{3}=3$.
Vậy $\int\limits_{\dfrac{1}{e}}^{e}{\dfrac{f'(\ln x)\ln x}{x}dx}=5-3=2$.
Đáp án D.
 

Quảng cáo

Back
Top