Câu hỏi: Cho hàm số $f\left( x \right)={{x}^{3}}+\dfrac{1}{x}$. Khẳng định nào sau đây đúng?
A. $\int{f\left( x \right)\text{d}x}=3{{x}^{2}}+\dfrac{1}{{{x}^{2}}}+C$.
B. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{4}}}{4}+C$.
C. $\int{f\left( x \right)\text{d}x}=3{{x}^{2}}-\dfrac{1}{{{x}^{2}}}+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{4}}}{4}+\ln \left| x \right|+C$.
A. $\int{f\left( x \right)\text{d}x}=3{{x}^{2}}+\dfrac{1}{{{x}^{2}}}+C$.
B. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{4}}}{4}+C$.
C. $\int{f\left( x \right)\text{d}x}=3{{x}^{2}}-\dfrac{1}{{{x}^{2}}}+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{{{x}^{4}}}{4}+\ln \left| x \right|+C$.
Ta có $\int{f\left( x \right)\text{d}x}=\int{\left( {{x}^{3}}+\dfrac{1}{x} \right)\text{d}x}=\dfrac{{{x}^{4}}}{4}+\ln \left| x \right|+C$.
Đáp án D.