Câu hỏi: Cho hàm số $f\left( x \right)$ và $g\left( x \right)$ cùng liên tục trên $\mathbb{R}$. Khẳng định nào đúng
A. $\int{\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]\text{d}x}=\dfrac{\int{f\left( x \right)\text{d}x}}{\int{g\left( x \right)\text{d}x}}$.
B. $\int{\left[ f\left( x \right)+g\left( x \right) \right]}\text{d}x=\int{f\left( x \right)}\text{d}x+\int{g\left( x \right)}\text{d}x$.
C. $\int{k.f\left( x \right)}\text{d}x=\int{k.f\left( x \right)}\text{d}x$ ( $k\in \mathbb{R}$ ).
D. $\int{\left[ f\left( x \right).g\left( x \right) \right]}\text{d}x=\int{f\left( x \right)}\text{d}x.\int{g\left( x \right)}\text{d}x$.
A. $\int{\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]\text{d}x}=\dfrac{\int{f\left( x \right)\text{d}x}}{\int{g\left( x \right)\text{d}x}}$.
B. $\int{\left[ f\left( x \right)+g\left( x \right) \right]}\text{d}x=\int{f\left( x \right)}\text{d}x+\int{g\left( x \right)}\text{d}x$.
C. $\int{k.f\left( x \right)}\text{d}x=\int{k.f\left( x \right)}\text{d}x$ ( $k\in \mathbb{R}$ ).
D. $\int{\left[ f\left( x \right).g\left( x \right) \right]}\text{d}x=\int{f\left( x \right)}\text{d}x.\int{g\left( x \right)}\text{d}x$.
Theo tính chất của phép toán nguyên hàm.
Đáp án B.