Câu hỏi: Cho hàm số $f\left( x \right)=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( x+\sqrt{1+{{x}^{2}}} \right)+b\text{x}{{\sin }^{2018}}+2$ với a, b là các số thực và $f\left( {{7}^{\log 5}} \right)=6$. Tính $f\left( -{{5}^{\log 7}} \right)$.
A. $f\left( -{{5}^{\log 7}} \right)=2$
B. $f\left( -{{5}^{\log 7}} \right)=4$
C. $f\left( -{{5}^{\log 7}} \right)=-2$
D. $f\left( -{{5}^{\log 7}} \right)=6$
A. $f\left( -{{5}^{\log 7}} \right)=2$
B. $f\left( -{{5}^{\log 7}} \right)=4$
C. $f\left( -{{5}^{\log 7}} \right)=-2$
D. $f\left( -{{5}^{\log 7}} \right)=6$
Ta có $f\left( x \right)=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( x+\sqrt{1+{{x}^{2}}} \right)+b\text{x}.{{\sin }^{2018}}x+2$
Và $f\left( -x \right)=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( -x+\sqrt{1+{{x}^{2}}} \right)-b\text{x}.{{\sin }^{2018}}\left( -x \right)+2$
$=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}{{\left( x+\sqrt{1+{{x}^{2}}} \right)}^{-1}}-b\text{x}.{{\sin }^{2018}}x+2$
$=-\left[ \left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( x+\sqrt{1+{{x}^{2}}} \right)+b\text{x}.{{\sin }^{2018}}x+2 \right]+4=-f\left( x \right)+4$.
Vậy $f\left( -{{5}^{\log 7}} \right)=f\left( -{{7}^{\log 5}} \right)=-f\left( {{7}^{\log 5}} \right)+4=-6+4=-2$.
Và $f\left( -x \right)=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( -x+\sqrt{1+{{x}^{2}}} \right)-b\text{x}.{{\sin }^{2018}}\left( -x \right)+2$
$=\left( {{a}^{2}}+1 \right){{\ln }^{2017}}{{\left( x+\sqrt{1+{{x}^{2}}} \right)}^{-1}}-b\text{x}.{{\sin }^{2018}}x+2$
$=-\left[ \left( {{a}^{2}}+1 \right){{\ln }^{2017}}\left( x+\sqrt{1+{{x}^{2}}} \right)+b\text{x}.{{\sin }^{2018}}x+2 \right]+4=-f\left( x \right)+4$.
Vậy $f\left( -{{5}^{\log 7}} \right)=f\left( -{{7}^{\log 5}} \right)=-f\left( {{7}^{\log 5}} \right)+4=-6+4=-2$.
Đáp án C.