Câu hỏi: Cho hàm số $f\left( x \right)$ có bảng biến thiên như sau:
Mệnh đề nào dưới đây sai?
A. Hàm số nghịch biến trên khoảng $\left( 0;1 \right)$.
B. Hàm số nghịch iến trên khoảng $\left( -1;0 \right)$.
C. Hàm số đồng biến trên khoảng $\left( 2;+\infty \right)$.
D. Hàm số đồng biến trên khoảng $\left( -\infty ;3 \right)$.
Mệnh đề nào dưới đây sai?
A. Hàm số nghịch biến trên khoảng $\left( 0;1 \right)$.
B. Hàm số nghịch iến trên khoảng $\left( -1;0 \right)$.
C. Hàm số đồng biến trên khoảng $\left( 2;+\infty \right)$.
D. Hàm số đồng biến trên khoảng $\left( -\infty ;3 \right)$.
Phương pháp giải:
Dựa vào BBT xác định các khoảng đồng biến (nghịch biến) là các khoảng mà hàm số liên tục và có đạo hàm dương (âm).
Giải chi tiết:
Dựa vào BBT ta thấy hàm số đồng biến trên khoảng $\left( -\infty ;-1 \right)$ và $\left( 1;+\infty \right)$, nghịch biến trên $\left( -1;1 \right)$.
Do đó các đáp án A, B, C đúng và đáp án D sai.
Dựa vào BBT xác định các khoảng đồng biến (nghịch biến) là các khoảng mà hàm số liên tục và có đạo hàm dương (âm).
Giải chi tiết:
Dựa vào BBT ta thấy hàm số đồng biến trên khoảng $\left( -\infty ;-1 \right)$ và $\left( 1;+\infty \right)$, nghịch biến trên $\left( -1;1 \right)$.
Do đó các đáp án A, B, C đúng và đáp án D sai.
Đáp án D.