Câu hỏi: Cho hàm số $f\left( x \right)=2{{x}^{2}}-3x+1$. Khẳng định nào sau đây đúng?
A. $\int{f\left( x \right)\text{d}x}=2{{x}^{2}}-3x+C$.
B. $\int{f\left( x \right)\text{d}x}=\dfrac{2}{3}{{x}^{3}}-\dfrac{3}{2}{{x}^{2}}+x+C$.
C. $\int{f\left( x \right)\text{d}x}=2{{x}^{3}}-3{{x}^{2}}+x+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{3}{2}{{x}^{3}}-\dfrac{2}{3}{{x}^{2}}+x+C$.
A. $\int{f\left( x \right)\text{d}x}=2{{x}^{2}}-3x+C$.
B. $\int{f\left( x \right)\text{d}x}=\dfrac{2}{3}{{x}^{3}}-\dfrac{3}{2}{{x}^{2}}+x+C$.
C. $\int{f\left( x \right)\text{d}x}=2{{x}^{3}}-3{{x}^{2}}+x+C$.
D. $\int{f\left( x \right)\text{d}x}=\dfrac{3}{2}{{x}^{3}}-\dfrac{2}{3}{{x}^{2}}+x+C$.
Ta có $\int{f\left( x \right)\text{d}x}=\int{\left( 2{{x}^{2}}-3x+1 \right)\text{d}x}=\dfrac{2}{3}{{x}^{3}}-\dfrac{3}{2}{{x}^{2}}+x+C$.
Đáp án B.