T

Cho đường thẳng d:x11=y22=z21...

Câu hỏi: Cho đường thẳng d:x11=y22=z21 và điểm A(1;2;1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P):x2y+2z+1=0.
A. R=2.
B. R=4.
C. R=1.
D. R=3.
Đường thẳng d:x11=y22=z21d:{z=1+ty=22tz=2+t.
IdI(1+t;22t;2+t).
Lại có mặt cầu đi qua A(1;2;1) và tiếp xúc với mặt phẳng (P):x2y+2z+1=0 nên bán kính mặt cầu R=IA=d(I;(P)).
Lại có IA=t2+4t2+(t1)2=16t2+2t+1;d(I;(P))=|1+t2(22t)+2(2+t)+1|12+(2)2+22=|7t+2|3.
Từ đó ta có IA=d(I;(P))6t2+2t+1=|7t+2|3
9(6t2+2t+1)=(7t+2)25t2=10t+55(t1)2=0t=1
Suy ra R=d(I;(P))=|7.1+2|3=3.
Lưu ý:
Khoảng cách từ I(x0;y0;z0) đến mặt phẳng (P):ax+by+cz+d=0d(I;(P))=|ax0+by0+cz0+d|a2+b2+c2.
Đáp án D.
 

Câu hỏi này có trong đề thi

Quảng cáo

Back
Top