18/12/21 Câu hỏi: Biết hàm số f(x)=x3+ax2+bx+c đạt cực đại tại điểm x=−3,f(−3)=28 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính S=a2+b2−c2 A. S=2254 B. S=6198 C. S=89 D. S=91 Lời giải Do đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1 nên c=1. Ta có f′(x)=3x2+2ax+b Hàm số đạt cực đại tại điểm x=−3 nên −27−6a+b=0 Do f(−3)=28 nên −27+9a−3b+c=28. Khi đó ta có hệ phương trình {c=1−27−6a+b=0−27+9a−3b+c=28⇔{c=16a−b=−279a−3b=−54⇔{a=−3b=9c=1 Vậy S=a2+b2−c2=(−3)2+92−1=89. Đáp án C. Click để xem thêm...
Câu hỏi: Biết hàm số f(x)=x3+ax2+bx+c đạt cực đại tại điểm x=−3,f(−3)=28 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính S=a2+b2−c2 A. S=2254 B. S=6198 C. S=89 D. S=91 Lời giải Do đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1 nên c=1. Ta có f′(x)=3x2+2ax+b Hàm số đạt cực đại tại điểm x=−3 nên −27−6a+b=0 Do f(−3)=28 nên −27+9a−3b+c=28. Khi đó ta có hệ phương trình {c=1−27−6a+b=0−27+9a−3b+c=28⇔{c=16a−b=−279a−3b=−54⇔{a=−3b=9c=1 Vậy S=a2+b2−c2=(−3)2+92−1=89. Đáp án C.