Câu hỏi: Biết $F\left( x \right)={{x}^{4}}$ là một nguyên hàm của hàm số $f\left( x \right)$ trên $\mathbb{R}$. Giá trị của $\int\limits_{-1}^{2}{\left( 6x+f\left( x \right) \right)\text{d}x}$ bằng
A. $\dfrac{78}{5}$.
B. $24$.
C. $\dfrac{123}{5}$.
D. $33$.
A. $\dfrac{78}{5}$.
B. $24$.
C. $\dfrac{123}{5}$.
D. $33$.
Ta có $\int\limits_{-1}^{2}{\left( 6x+f\left( x \right) \right)\text{d}x}=\left. \left( 3{{x}^{2}}+{{x}^{4}} \right) \right|_{-1}^{2}=12+16-3-1=24$.
Đáp án B.