The Collectors

Bài 3.24 trang 150 SBT hình học 11

Câu hỏi: Chứng minh rằng nếu tứ diện ABCD có \(AB \bot C{\rm{D}}\) và \(AC \bot B{\rm{D}}\) thì \(AD \bot BC\).
Phương pháp giải
Sử dụng lý thuyết: "Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó."
Lời giải chi tiết
1615388719565.png

Vẽ \(AH \bot \left( {BC{\rm{D}}} \right)\) tại H, ta có \(C{\rm{D}} \bot AH\) và vì \(C{\rm{D}} \bot AB\) ta suy ra \(C{\rm{D}} \bot BH\). Tương tự vì \({\rm{BD}} \bot AC\) ta suy ra \({\rm{BD}} \bot CH\)
Vậy H là trực tâm của tam giác BCD tức là \(DH \bot BC\)
Vì \(AH \bot BC\) nên ta suy ra \(BC \bot A{\rm{D}}\)
Cách khác . Trước hết ta hãy chứng minh hệ thức:
\(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {{\rm{AD}}} .\overrightarrow {BC} = 0\) với bốn điểm A, B, C, D bất kì.
Thực vậy, ta có:
\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = \overrightarrow {AB} .\left({\overrightarrow {{\rm{AD}}} - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {{\rm{AD}}} - \overrightarrow {AC} .\overrightarrow {AB} \left(1 \right) \cr
& \overrightarrow {AC} .\overrightarrow {DB} = \overrightarrow {AC} .\left({\overrightarrow {AB} - \overrightarrow {{\rm{AD}}} } \right) = \overrightarrow {AC} .\overrightarrow {AB} - \overrightarrow {AC} .\overrightarrow {{\rm{AD}}} \left(2 \right) \cr
& \overrightarrow {{\rm{AD}}} .\overrightarrow {BC} = \overrightarrow {{\rm{AD}}} .\left({\overrightarrow {AC} - \overrightarrow {AB} } \right) = \overrightarrow {{\rm{AD}}} .\overrightarrow {AC} - \overrightarrow {{\rm{AD}}} .\overrightarrow {AB} \left(3 \right) \cr} \)
\(\left( 1 \right) + \left(2 \right) + \left(3 \right) \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0 \left(4 \right)\)
Do đó nếu \(AB \bot CD\) nghĩa là \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = 0 \), \(AC \bot BD\) nghĩa là \(\overrightarrow {AC} .\overrightarrow {B{\rm{D}}} = 0 \)
Từ hệ thức (4) ta suy ra \(\overrightarrow {AD} .\overrightarrow {BC} = 0 \), do đó \(A{\rm{D}} \bot BC\).
 

Quảng cáo

Back
Top