Câu hỏi: Trên một sợi dây đang có sóng dừng, phần tử tại điểm bụng dao động điều hoà với biên độ $A$. Hình bên là hình dạng của một đoạn dây ở một thời điểm nào đó. Lúc đó li độ của M là 4 mm, còn li độ của N bằng $-A/2$. Giá trị của A bằng
A. 8 mm.
B. 7 mm.
C. 14 mm.
D. 12 mm.
$\left| \dfrac{{{u}_{M}}}{{{u}_{N}}} \right|=\dfrac{{{A}_{M}}}{{{A}_{N}}}=\dfrac{A\left| \cos \left( \dfrac{2\pi .2}{12} \right) \right|}{A\left| \cos \left( \dfrac{2\pi .1}{12} \right) \right|}\Rightarrow \dfrac{4}{A/2}=\dfrac{\sqrt{3}}{3}\Rightarrow A=8\sqrt{3}mm\approx 14mm$.
A. 8 mm.
B. 7 mm.
C. 14 mm.
D. 12 mm.
$\lambda =12\hat{o}$ và M cách bụng gần nhất là 2 ô và N cách bụng gần nhất là 1 ô$\left| \dfrac{{{u}_{M}}}{{{u}_{N}}} \right|=\dfrac{{{A}_{M}}}{{{A}_{N}}}=\dfrac{A\left| \cos \left( \dfrac{2\pi .2}{12} \right) \right|}{A\left| \cos \left( \dfrac{2\pi .1}{12} \right) \right|}\Rightarrow \dfrac{4}{A/2}=\dfrac{\sqrt{3}}{3}\Rightarrow A=8\sqrt{3}mm\approx 14mm$.
Đáp án C.