T

Trên một sợi dây có hai đầu cố định, đang có sóng dừng với biên độ...

Câu hỏi: Trên một sợi dây có hai đầu cố định, đang có sóng dừng với biên độ dao động của bụng sóng là 4 cm. Khoảng cách giữa hai đầu dây là 60 cm, sóng truyền trên dây có bước sóng là 30 cm. Gọi $M$ và $N$ là hai điểm trên dây mà phần tử tại đó dao động với biên độ lần lượt là $2\sqrt{2}$ cm và 2 cm. Gọi ${{d}_{max}}$ là khoảng cách lớn nhất giữa $M$ và $N$, ${{d}_{\min }}$ là khoảng cách nhỏ nhất giữa $M$ và $N$. Tỉ số $\dfrac{{{d}_{max}}}{{{d}_{\min }}}$ có giá trị gần nhất với giá trị nào sau đây?
A. 1.
B. 2.
C. 3.
D. 4.
image13.png

Ta có:
$\dfrac{L}{0,5\lambda }=\dfrac{\left( 60 \right)}{0,5.\left( 30 \right)}=4$ → sóng dừng hình thành trên dây với 4 bó sóng.
$MN=M{{N}_{max}}$ → $M$ thuộc bó thứ nhất và $N$ thuộc bó thứ 4 (dao động ngược pha nhau).
$\left\{ \begin{aligned}
& {{a}_{M}}=\dfrac{\sqrt{2}}{2}{{a}_{bung}} \\
& {{a}_{N}}=\dfrac{1}{2}{{a}_{bung}} \\
\end{aligned} \right. $ → $ \left\{ \begin{aligned}
& \Delta {{x}_{AM}}=\dfrac{\lambda }{8} \\
& \Delta {{x}_{BN}}=\dfrac{\lambda }{12} \\
\end{aligned} \right.$.
$M{{N}_{max}}=\sqrt{{{\left( {{a}_{M}}+{{a}_{N}} \right)}^{2}}+\left( AB-\Delta {{x}_{AM}}-\Delta {{x}_{BN}} \right)}=\sqrt{{{\left( 2\sqrt{2}+2 \right)}^{2}}+{{\left( 60-\dfrac{30}{8}-\dfrac{30}{12} \right)}^{2}}}\approx 52,7$ cm.
$M{{N}_{\min }}=AB-\Delta {{x}_{AM}}-\Delta {{x}_{BN}}=60-\dfrac{30}{8}-\dfrac{30}{12}=52,5$ cm.
$\dfrac{{{d}_{max}}}{{{d}_{\min }}}=\dfrac{\left( 52,7 \right)}{\left( 52,5 \right)}\approx 1$.
Đáp án A.
 

Quảng cáo

Back
Top