Câu hỏi: Tìm nguyên hàm của hàm số $f\left( x \right)=\cos \left( 3x+\dfrac{\pi }{6} \right)$
A. $\int{f\left( x \right)dx=\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
B. $\int{f\left( x \right)dx=\dfrac{1}{6}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
C. $\int{f\left( x \right)dx=-\dfrac{1}{3}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
D. $\int{f\left( x \right)dx=\dfrac{1}{3}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
A. $\int{f\left( x \right)dx=\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
B. $\int{f\left( x \right)dx=\dfrac{1}{6}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
C. $\int{f\left( x \right)dx=-\dfrac{1}{3}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
D. $\int{f\left( x \right)dx=\dfrac{1}{3}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
Ta có $\int{\cos \left( 3x+\dfrac{\pi }{6} \right)dx=\dfrac{1}{3}\sin \left( 3x+\dfrac{\pi }{6} \right)+C}$
Đáp án D.