Câu hỏi: Tìm $\int{\dfrac{1}{x}dx.}$
A. $\int{\dfrac{1}{x}dx=\ln \left| x \right|+C.}$
B. $\int{\dfrac{1}{x}dx=-\ln \left| x \right|+C.}$
C. $\int{\dfrac{1}{x}dx=\dfrac{1}{{{x}^{2}}}+C.}$
D. $\int{\dfrac{1}{x}dx=-\dfrac{1}{{{x}^{2}}}+C.}$
A. $\int{\dfrac{1}{x}dx=\ln \left| x \right|+C.}$
B. $\int{\dfrac{1}{x}dx=-\ln \left| x \right|+C.}$
C. $\int{\dfrac{1}{x}dx=\dfrac{1}{{{x}^{2}}}+C.}$
D. $\int{\dfrac{1}{x}dx=-\dfrac{1}{{{x}^{2}}}+C.}$
Ta có: $\int\limits_{{}}^{{}}{\dfrac{1}{x}dx}=\ln \left| x \right|+C.$
Đáp án A.