Câu hỏi: Số nghiệm của phương trình $\log _{2}(x-1)^{2}=4+2 \log _{\dfrac{1}{2}}(3-x)$ là
A. 1.
B. 2.
C. 3.
D. 4.
A. 1.
B. 2.
C. 3.
D. 4.
Điều kiện của phương trình $\left\{ \begin{aligned}
& x-1\ne 0 \\
& 3-x>0 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x\ne 1 \\
& x<3 \\
\end{aligned} \right.$.
${{\log }_{2}}{{(x-1)}^{2}}=4+2{{\log }_{\dfrac{1}{2}}}(3-x)\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& {{\log }_{2}}\left| x-1 \right|+{{\log }_{2}}\left( 3-x \right)=2 \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& {{\log }_{2}}\left| x-1 \right|\left( 3-x \right)=2 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left| x-1 \right|\left( 3-x \right)=4 \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left| \left( x-1 \right)\left( 3-x \right) \right|=4 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& \left( x-1 \right)\left( 3-x \right)=4 \\
& \left( x-1 \right)\left( 3-x \right)=-4 \\
\end{aligned} \right. \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& {{x}^{2}}-4x+7=0\left( vn \right) \\
& {{x}^{2}}-4x-1=0 \\
\end{aligned} \right. \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& x=2-\sqrt{5} \\
& x=2+\sqrt{5} \\
\end{aligned} \right. \\
\end{aligned} \right.\Leftrightarrow x=2-\sqrt{5}$
Vậy phương trình có 1 nghiệm.
& x-1\ne 0 \\
& 3-x>0 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x\ne 1 \\
& x<3 \\
\end{aligned} \right.$.
${{\log }_{2}}{{(x-1)}^{2}}=4+2{{\log }_{\dfrac{1}{2}}}(3-x)\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& {{\log }_{2}}\left| x-1 \right|+{{\log }_{2}}\left( 3-x \right)=2 \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& {{\log }_{2}}\left| x-1 \right|\left( 3-x \right)=2 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left| x-1 \right|\left( 3-x \right)=4 \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left| \left( x-1 \right)\left( 3-x \right) \right|=4 \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& \left( x-1 \right)\left( 3-x \right)=4 \\
& \left( x-1 \right)\left( 3-x \right)=-4 \\
\end{aligned} \right. \\
\end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& {{x}^{2}}-4x+7=0\left( vn \right) \\
& {{x}^{2}}-4x-1=0 \\
\end{aligned} \right. \\
\end{aligned} \right.$
$\Leftrightarrow \left\{ \begin{aligned}
& x<3,\ x\ne 1 \\
& \left[ \begin{aligned}
& x=2-\sqrt{5} \\
& x=2+\sqrt{5} \\
\end{aligned} \right. \\
\end{aligned} \right.\Leftrightarrow x=2-\sqrt{5}$
Vậy phương trình có 1 nghiệm.
Đáp án A.